NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Table of Contents
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Exercise 2.1
Question 1:
Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
निम्नलिखित व्यंजकों में कौन-कौन एक चर में बहुपद हैं और कौन-कौन नहीं हैं ? कारण के साथ उत्तर दीजिए :
\((i) 4x^2 – 3x + 7 \quad (ii) y^2 + \sqrt{2} \quad (iii) 3\sqrt{t} + t\sqrt{2}\quad (iv) y + \frac{2}{y}\quad(v) x^{10} + y^{3} +t^{50}\)
Answer
(i) 4x2 – 3x + 7
It is a polynomial in one variable i.e., x
because each exponent of x is a whole number.
(ii) y2 + √2
It is a polynomial in one variable i.e., y
because each exponent of y is a whole number.
(iii) 3 √t + t√2
It is not a polynomial, because one of the exponents of t is ,\(\frac{1}{2}\)
which is not a whole number.
(iv) y + \(\frac{2}{y}\)
It is not a polynomial, because one of the exponents of y is -1,
which is not a whole number.
(v) x10+ y3 + t50
Here, exponent of every variable is a whole number, but x10 + y3 + t50 is a polynomial in x, y and t, i.e., in three variables.
So, it is not a polynomial in one variable.
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Question 2:
Write the coefficients of x2 in each of the following:
निम्नलिखित में से प्रत्येक में x2 का गुणांक लिखिए |
\((i) 2 + x^2 + x\quad (ii) 2 – x^2 + x^3 \quad (iii) \frac{\pi}{2}x^2 + x \quad (iv) \sqrt{2}x – 1 \)
Answer
\((i) 2 + x^2 + x\)
coefficient of x2 = 1
\((ii) 2 – x^2 + x^3 \)
coefficient of x2 = -1
\((iii) \frac{\pi}{2}x^2 + x\)
coefficient of x2 = \(\frac{\pi}{2}\)
\((iv) \sqrt{2}x – 1 \)
coefficient of x2 = 0
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Question 3:
Give one example each of a binomial of degree 35, and of a monomial of degree 100.
35 घात के द्विपद का और 100 घात के एकपदी का एक-एक उदाहरण दीजिए |
Answer
A binomial of degree 35 = 3\(x^35\) – 4;
A monomial of degree 100 = \(\sqrt{2} y^{100}\)
NCERT Solutions of Class 9 Maths Ch-2 Polynomials
Question 4:
Write the degree of each of the following polynomials:
निम्नलिखित बहुपदों में से प्रत्येक के घात लिखिए:
\((i)\;5x^3 +4x^2 + 7x \quad (ii)\;4 – y^2 \quad (iii)\;5t – \sqrt{7}\quad (iv)\;3\)
Answer
(i) 3; (ii) 2; (iii) 1; (iv) 0
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Question 5:
Classify the following as linear, quadratic and cubic polynomials:
निम्नलिखित को रैखिक, द्विघात और त्रिघात बहुपद में वर्गीकृत कीजिए:
(i) x2 + x (ii) x – x3 (iii) y + y2 + 4 (iv) 1 + x (v) 3t (vi) r2 (vii) 7x3
Answer
(i) Quadratic; (ii) Cubic; (iii) Quadratic; (iv) Linear; (v) Linear; (vi) Quadratic; (vii) Cubic
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद
Exercise 2.2
Question 1:
Find the value of the polynomial 5x – 4x2 + 3 at
(i) x = 0 (ii) x = –1 (iii) x = 2
Answer
Let P(x) = 5x−4x2 + 3
(i) When x = 0
P(0) = 5(0)-4(0)2+3 = 3
(ii) When x = -1
P(−1) = 5(−1) − 4(−1)2 + 3 = −5–4+3 = −6
(iii) When x = 2
P(2) = 5(2) − 4(2)2 + 3 = 10–16 + 3 = −3
Question 2:
Find p(0), p(1) and p(2) for each of the following polynomials:
(i) p(y) = y2 – y + 1
(ii) p(t) = 2 + t + 2t2 – t3
(iii) p(x) = x3
(iv) p(x) = (x – 1)(x + 1)
Answer
p(y) = y2–y+1
∴p(0) = (0)2−(0) + 1 = 1
p(1) = (1)2–(1) + 1 = 1
p(2) = (2)2–(2) + 1 = 3
(ii) p(t)=2+t+2t2−t3
∴p(0) = 2+0+2(0)2–(0)3=2
p(1) = 2+1+2(1)2–(1)3=2+1+2–1=4
p(2) = 2+2+2(2)2–(2)3=2+2+8–8=4
(iii) p(x)=x3
∴p(0) = (0)3 = 0
p(1) = (1)3 = 1
p(2) = (2)3 = 8
(iv) P(x) = (x−1)(x+1)
∴p(0) = (0–1)(0+1) = (−1)(1) = –1
p(1) = (1–1)(1+1) = 0(2) = 0
p(2) = (2–1)(2+1) = 1(3) = 3
Question 3:
Verify whether the following are zeroes of the polynomial, indicated against them.
(i) p(x) = 3x + 1; x = \(\frac{-1}{3}\)
(ii) p(x) = 5x – \(\pi\), x = \(\frac{4}{5}\)
(iii) p(x) = \(x^2 – 1\); x = 1, -1
(iv) p(x) = (x + 1) (x – 2); x = -1, 2
(v) p(x) = \(x^2\); x = 0
(vi) p(x) = \(lx + m; x = \frac{-m}{l}\)
(vii) p(x) = 3\(x^2\) – 1; x = -\(\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\)
(viii) p(x) = 2x + 1; x = \(\frac{1}{2}\)
Question 4:
Find the zero of the polynomial in each of the following cases:
(i) p(x) = x + 5 (ii) p(x) = x – 5 (iii) p(x) = 2x + 5 (iv) p(x) = 3x – 2 (v) p(x) = 3x
(vi) p(x) = ax, a\(\ne\)0 (vii) p(x) = cx + d, a\(\ne\)0, c, d are real numbers.
Answer
(i) p(x) = x + 5
\(\quad\) p(x) = 0
\(\Rightarrow\) x + 5 = 0
\(\Rightarrow\) x = – 5
(ii) p(x) = x – 5
\(\quad\) p(x) = 0
\(\Rightarrow\) x – 5 = 0
\(\Rightarrow\) x = 5
(iii) p(x) = 2x + 5
\(\quad\) p(x) = 0
\(\quad\) 2x + 5 = 0
\(\Rightarrow\) 2x = – 5
\(\Rightarrow\) x = \(\frac{-5}{2}\)
(iv) p(x) = 3x – 2
\(\quad\) p(x) = 0
\(\Rightarrow\) 3x – 2 = 0
\(\Rightarrow\) 3x = 2
\(\Rightarrow\) x = \(\frac{2}{3}\)
(v) p(x) = 3x
\(\quad\) p(x) = 0
\(\Rightarrow\) 3x = 0
\(\Rightarrow\) x = \(\frac{0}{3}\) = 0
(vi) p(x) = ax, a\(\ne\)0
\(\quad\) p(x) = 0
\(\Rightarrow\) ax = 0
\(\Rightarrow\) x = \(\frac{0}{a}\) = 0
(vii) p(x) = cx + d, a\(\ne\)0, c, d are real numbers.
\(\quad\) p(x) = 0
\(\Rightarrow\) cx + d = 0
\(\Rightarrow\) cx = -d
\(\Rightarrow\) x = \(\frac{-d}{c}\)
Exercise 2.3
Question 1:
Determine which of the following polynomials has (x + 1) a factor :
(i) x3 + x2 + x + 1 (ii) x4 + x3 + x2 + x + 1 (iii) x4 + 3x3 + 3x2 + x + 1 (iv) x3 – x2 – (2 + \(\sqrt{2}\))x + \(\sqrt{2}\)
Answer
(i) Let p(x) = x3 + x2 + x + 1
\(\quad\) x + 1 = 0
\(\Rightarrow\) x = – 1
p(-1) = (-1)3 + (-1)2 + (-1) + 1
\(\quad\)= – 1 + 1 – 1 + 1 = 0
So, (x + 1) is a factor of p(x).
(ii) Let p(x) = x4 + x3 + x2 + x + 1
\(\quad\) x + 1 = 0
\(\Rightarrow\) x = – 1
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
\(\quad\)= 1 – 1 + 1 – 1 + 1 = 1
So, (x + 1) is not a factor of p(x).
(iii) Let p(x) = x4 + 3x3 + 3x2 + x + 1
\(\quad\) x + 1 = 0
\(\Rightarrow\) x = – 1
p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
\(\quad\)= 1 – 3 + 3 – 1 + 1 = 1
So, (x + 1) is not a factor of p(x).
(iv) Let p(x) = x3 – x2 – (2 + \(\sqrt{2}\))x + \(\sqrt{2}\)
\(\quad\) x + 1 = 0
\(\Rightarrow\) x = – 1
p(-1) = (-1)3 – (-1)2 – (2 + \(\sqrt{2}\))(-1) + \(\sqrt{2}\)
\(\quad\)= – 1 – 1 + 2 + \(\sqrt{2}\) + \(\sqrt{2}\)
\(\quad\) = – 2 + 2 + 2\(\sqrt{2}\) = 2\(\sqrt{2}\)
So, (x + 1) is not a factor of p(x).
Question 2:
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
(i) p(x) = 2x3 + x2 -2x – 1 , g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1 , g(x) = x + 2
(iii) p(x) = x3 – 4x2 + x + 6 , g(x) = x – 3
Answer
(i) p(x) = 2x3 + x2 -2x – 1
\(\quad\) g(x) = x + 1 = 0
\(\Rightarrow\) x = -1
p(-1) = 2(-1)3 + (-1)2 -2(-1) – 1
\(\quad\) = -2 + 1 + 2 – 1 = 0
So, g(x) is a factor of p(x).
(ii) p(x) = x3 + 3x2 + 3x + 1
\(\quad\) g(x) = x + 2 = 0
\(\Rightarrow\) x = – 2
\(\quad\) p(-2) = (-2)3 + 3(-2)2 + 3(-2) + 1
\(\quad\) = – 8 + 12 – 6 + 1 = – 1
So, g(x) is not a factor of p(x).
(iii) p(x) = x3 – 4x2 + x + 6
\(\quad\) g(x) = x – 3 = 0
\(\Rightarrow\) x = 3
\(\quad\) p(3) = (3)3 – 4(3)2 + 3 + 6
\(\quad\) = 27 – 36 + 3 + 6= 0
So, g(x) is a factor of p(x).
Question 3:
Find the value of k, if x – 1 is a factor of p(x) in each of the following cases:
(i) p(x) = x2 + x + k
(ii) p(x) = 2x2 + kx + \(\sqrt{2}\)
(iii) p(x) = kx2 – \(\sqrt{2}\)x + 1
(iv) p(x) = kx2 – 3x + k
Answer
(i) p(x) = x2 + x + k
\(\quad\) x – 1 is a factor of p (x).
\(\Rightarrow\) x – 1 = 0 \(\Rightarrow\) x = 1
\(\therefore\) p(1) = 0
\(\Rightarrow\) (1)2 + 1 + k = 0
\(\Rightarrow\) 1 + 1 + k = 0
\(\Rightarrow\) 2 + k = 0
\(\Rightarrow\) k = – 2
(ii) p(x) = 2x2 + kx + \(\sqrt{2}\)
\(\quad\) x – 1 is a factor of p (x).
\(\Rightarrow\) x – 1 = 0 \(\Rightarrow\) x = 1
\(\therefore\) p(1) = 0
\(\Rightarrow\) 2(1)2 + k(1) + \(\sqrt{2}\) = 0
\(\Rightarrow\) 2 + k + \(\sqrt{2}\) = 0
\(\Rightarrow\) k = – 2 – \(\sqrt{2}\)
(iii) p(x) = kx2 – \(\sqrt{2}\)x + 1
\(\quad\) x – 1 is a factor of p (x).
\(\Rightarrow\) x – 1 = 0 \(\Rightarrow\) x = 1
\(\therefore\) p(1) = 0
\(\Rightarrow\) k(1)2 – \(\sqrt{2}\)(1) + 1 = 0
\(\Rightarrow\) k – \(\sqrt{2}\) + 1 = 0
\(\Rightarrow\) k = \(\sqrt{2}\) – 1
(iv) p(x) = kx2 – 3x + k
\(\quad\) x – 1 is a factor of p (x).
\(\Rightarrow\) x – 1 = 0 \(\Rightarrow\) x = 1
\(\quad\) p(1) = 0
\(\Rightarrow\) k(1)2 – 3(1) + k = 0
\(\Rightarrow\) k – 3 + k = 0
\(\Rightarrow\) 2k – 3 = 0
\(\Rightarrow\) k = \(\frac{3}{2}\)
Question 4:
Factorise :
(i) 12x2 – 7x + 1 (ii) 2x2 + 7x + 3 (iii) 6x2 + 5x – 6 (iv) 3x2 – x – 4
Answer
(i) 12x2 – 7x + 1
\(\;\) = 12x2 – 4x – 3x + 1
\(\;\) = 4x(3x – 1 ) – 1(3x – 1)
\(\;\) = (3x -1) (4x – 1)
(ii) 2x2 + 7x + 3
\(\;\) = 2x2 + 6x + x + 3
\(\;\) = 2x(x + 3 ) + 1(x + 3)
\(\;\) = (x + 3) (2x + 1)
(iii) 6x2 + 5x – 6
\(\;\) = 6x2 + 9x – 4x – 6
\(\;\) = 3x(2x + 3 ) – 2(2x + 3)
\(\;\) = (2x + 3) (3x – 2)
(iv) 3x2 – x – 4
\(\;\) = 3x2 – 4x + 3x – 4
\(\;\) = x(3x – 4 ) + 1(3x – 4)
\(\;\) = (3x – 4) (x + 1)
Question 5:
Factorise :
(i) x3 – 2x2 – x + 2 (ii) x3 – 3x2 – 9x – 5 (iii) x3 + 13x2 + 32x + 20 (iv) 2y3 + y2 – 2y – 1
Answer
(i) x3 – 2x2 – x + 2
\(\;\) = x3 – 2x2 – x + 2 = x2(x − 2) −1(x − 2) = (x2−1)(x−2)= (x + 1)(x – 1)(x – 2)
(ii) x3 – 3x2 – 9x – 5
\(\;\) Putting x = – 1
\(\;\) = (-1)3 – 3(-1)2 – 9(-1) – 5 = -1 – 3 + 9 – 5 = 0
\(\therefore\) x + 1 is a factor of given polynomial.
use logn division, \(\frac{x^3 – 3x^2 – 9x – 5}{(x + 1)} = x^2 – 4x – 5\) = (x + 1)(x – 5)
\(\therefore\) x3 – 2x2 – x + 2 = (x + 1) (x + 1)(x – 5)
(iii) x3 + 13x2 + 32x + 20
\(\;\) Putting x = – 1
\(\;\) = (-1)3 + 13(-1)2 + 32(-1) + 20 = -1 + 13 – 32 + 20 = 0
\(\therefore\) x + 1 is a factor of given polynomial.
use logn division, \(\frac{x^3 + 13x^2 + 32x + 20}{(x + 1)} = x^2 + 12x + 20\) = (x + 2 )(x + 10)
\(\therefore\) x3 + 13x2 + 32x + 20 = (x + 1) (x + 2)(x + 10)
(iv) 2y3 + y2 – 2y – 1
\(\;\) = y2(2y + 1) – 1(2y +1 ) = ( y2 – 1) (2y + 1) = (y + 1) (y -1) (2y + 1)
Exercise 2.4
Question 1:
Use suitable identities to find the following products:
(i) (x + 4) (x + 10) (ii) (x + 8) (x – 10) (iii) (3x + 4) (3x – 5) (iv) (\(y^2 + \frac{3}{2})\) (\(y^2 – \frac{3}{2})\) (v) (3 – 2x) (3 + 2x)
Answer
(i) (x + 4) (x + 10)
[(x+a)(x+b) = x2 + (a+b)x + ab]
(x + 4) (x + 10) = x2 + (4 + 10)x + \(4\times 10\) = x2 + 14x + 40
(ii) (x + 8) (x – 10)
[(x+a)(x+b) = x2 + (a+b)x + ab]
(x + 8) (x – 10) = x2 + (8 – 10)x + \(8\times (-10)\) = x2 – 2x – 80
(iii) (3x + 4) (3x – 5)
[(x+a)(x+b) = x2 + (a+b)x + ab]
(3x + 4) (3x – 5) = (3x)2 + (4 – 5)3x + \(4\times (-5)\) =9 x2 + (-1)3x – 20 = 9 x2 -3x – 20
(iv) (\(y^2 + \frac{3}{2})\) (\(y^2 – \frac{3}{2})\)
[(x+a)(x+b) = x2 + (a+b)x + ab]
(\(y^2 + \frac{3}{2})\) (\(y^2 – \frac{3}{2})\) = (y2)2 + \((\frac{3}{2} – \frac{3}{2})\dot(y^2) + \frac{3}{2}\times(\frac{-3}{2}\)) = \(y^4 – \frac{9}{4}\)
(v) (3 – 2x) (3 + 2x)
[(x+a)(x+b) = x2 + (a+b)x + ab]
(3 – 2x) (3 + 2x) = (3)2 + (-2x + 2x)3 + \((-2x)\times 2x\) = 9 – 4x2.
Question 2:
Evaluate the following products without multiplying directly:
(i) 103 × 107 (ii) 95 × 96 (iii) 104 × 96
Answer
(i) 103 × 107
[(x+a)(x+b) = x2 + (a+b)x + ab]
= (100 + 3) (100 + 7)
= \(100^2\) +(3 + 7)100 + 3\(\times\)7
= 10000 + \(10\times100\) + 21
= 10000 + 1000 + 21
= 11021
(ii) 95 × 96
[(x+a)(x+b) = x2 + (a+b)x + ab]
= (100 – 5) (100 – 4)
= \(100^2 +(-5 – 4)100 + (-5)\times(-4)\)
= 10000 + \((-9)\times100\) + 20
= 10000 – 900 + 20
= 9120
(iii) 104 × 96
[(x+a)(x+b) = x2 + (a+b)x + ab]
= (100 + 4) (100 – 4)
= \(100^2 +(4 – 4)100 + 4\times(-4)\)
= 10000 + \(0\times100\) – 16
= 10000 – 16
= 9984
Question 3:
Factorise the following using appropriate identities:
(i) 9x2 + 6xy +y2 (ii) 4y2 – 4y + 1 (iii) \(x^2 – \frac{y^2}{100}\)
Answer
(i) 9x2 + 6xy +y2
= (3x)2 + 2(3x)(y) + y2
[A2 + 2AB + B2 = (A + B)2]
= (3x + y)2
(ii) 4y2 – 4y + 1
= (2y)2 + 2(2x)(1) + (1)2
[A2 + 2AB + B2 = (A + B)2]
= (2x + 1)2
(iii) \(x^2 – \frac{y^2}{100}\)
= \(x^2 – \left( \frac{y}{10} \right)^2 \)
[A2 – B2 = (A+B) (A-B)]
= (\(x + \frac{y}{10})\) (\(x – \frac{y}{10})\)
Question 4:
Expand each of the following, using suitable identities:
(i) (x + 2y + 4z)2 (ii) (2x – y + z)2 (iii) (-2x + 3y + 2z)2 (iv) (3a – 7b – c)2 (v) (-2x + 5y – 3z)2 (vi) \(\left[\frac{1}{4}a-\frac{1}{2}b+1\right]^2\)
Answer
(i) (x + 2y + 4z)2
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= (x)2 + (2y)2+ (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 4zx
(ii) (2x – y + z)2
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= (2x)2 + (-y)2+ (z)2 + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4zx
(iii) (-2x + 3y + 2z)2
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= (-2x)2 + (3y)2+ (2z)2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8zx
(iv) (3a – 7b – c)2
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= (3a)2 + (-7b)2+ (-c)2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ca
(v) (-2x + 5y – 3z)2
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= (-2x)2 + (5y)2+ (-3z)2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx
(vi) \(\left[\frac{1}{4}a-\frac{1}{2}b+1\right]^2\)
[(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2CA]
= \(\left(\frac{1}{4}a\right)^2 + \left(\frac{-1}{2}b\right)^2 + (1)^2 + 2\left(\frac{1}{4}a\right)\times \left(\frac{-1}{2}b\right) + 2\times \left(\frac{-1}{2}b\right) \times (1) + 2\times(1) \times \left(\frac{1}{4}a\right)\)
= \(\frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 – \frac{1}{4}ab – b + \frac{1}{2}a\)
Question 5:
Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
(ii) 2x2 + y2 + 8z2 – 2\(\sqrt{2}\)xy + 4\(\sqrt{2}\)yz – 8xz
Answer
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
[A2 + B2 + C2 + 2AB + 2BC + 2CA = (A + B + C)2]
= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)
= (2x + 3y – 4z)2 = (2x + 3y – 4z)(2x + 3y – 4z)
(ii) 2x2 + y2 + 8z2 – 2\(\sqrt{2}\)xy + 4\(\sqrt{2}\)yz – 8xz
[A2 + B2 + C2 + 2AB + 2BC + 2CA = (A + B + C)2]
= \((-\sqrt{2}x)^2\) + y2 + \((2\sqrt{2}z)^2\) + 2\((-\sqrt{2}x)\)y + 2(y)\((2\sqrt{2}z)\) + 2\((2\sqrt{2}z)(-\sqrt{2}x)\)
= \(\left(-\sqrt{2}x + y + 2\sqrt{2}z\right)\)2 = \(\left(-\sqrt{2}x + y + 2\sqrt{2}z\right)\)\(\left(-\sqrt{2}x + y + 2\sqrt{2}z\right)\)
Question 6:
Write the following cubes in expanded form:
(i) (2x + 1)3 (ii) (2a – 3b)3 (iii) \([\frac{3}{2}x+1]^3 (iv) [x – \frac{2}{3}]^3\)
Answer
(i) (2x + 1)3
\(\;\) [(A + B)3 = A3 + 3A2B + 3AB2 + B3]
\(\;\) = (2x)3+ 3(2x)2(1) + 3(2x)(1)2 + (1)3
\(\;\) = 8x3 + 12x2 + 6x + 1
(ii) (2a – 3b)3
\(\;\) [(A – B)3 = A3 – 3A2B + 3AB2 – B3]
\(\;\) = (2a)3– 3(2a)2(3b) + 3(2a)(3b)2 + (3b)3
\(\;\) = 8x3 – 36a2b + 54ab2 + 27b3
(iii) \([\frac{3}{2}x+1]^3\)
\(\;\) [(A + B)3 = A3 + 3A2B + 3AB2 + B3]
\(\;\) = \(\left(\frac{3}{2}x\right)^3 \)+ 3\(\left(\frac{3}{2}x\right)^2\)(1) + 3\((\frac{3}{2}x)\)(1)2 + (1)3
\(\;\) = \(\frac{27}{8}x^3 + \frac{27}{2}x^2 + \frac{9}{2}x + 1 \)
Question 7:
Evaluate the following using suitable identities:
\((i) (99)^3 (ii) (102)^3 (iii) (998)^3\)
Answer
(i) (99)3 = (100 – 1)3
\(\;\) [(A – B)3 = A3 – 3A2B + 3AB2 – B3]
\(\;\) = (100)3 – 3(100)2(1) + 3(100)(1)2 – (1)3
\(\;\) = 1000000 – 30000 + 300 – 1
\(\;\) = 970299
(ii) (102)3 = (100 + 2)3
\(\;\) [(A + B)3 = A3 + 3A2B + 3AB2 + B3]
\(\;\) = (100)3 + 3(100)2(2) + 3(100)(2)2 + (2)3
\(\;\) = 1000000 + 60000 + 1200 + 8
\(\;\) = 1061208
(iii) (998)3 = (1000 – 2)3
\(\;\) [(A – B)3 = A3 – 3A2B + 3AB2 – B3]
\(\;\) = (1000)3 – 3(1000)2(2) + 3(1000)(2)2 – (2)3
\(\;\) = 1000000000 – 6000000 + 12000 – 8
\(\;\) = 994011992
Question 8:
Factorise each of the following:
(i) 8a3 + b3 + 12a2b + 6ab2
(ii) 8a3 – b3 – 12a2b + 6ab2
(iii) 27 – 125a3 -135a + 225a2
(iv) 64a3 – 27b3 -144a2b + 108ab2
(v) \(27p^3- \frac{1}{216} – \frac{9}{2} p^2 + \frac{1}{4}p\)
Answer
(i) 8a3 + b3 + 12a2b + 6ab2
[A3 + B3 + 3A2B + 3AB2 = (A + B)3]
= (2a)3 + b3 + 3(2a)2(b) + 3(2a)(b)2
= (2a + b)3 = (2a + b)(2a + b)(2a + b)
(ii) 8a3 – b3 – 12a2b + 6ab2
[A3 – B3 – 3A2B + 3AB2 = (A – B)3]
= (2a)3 – b3 – 3(2a)2(b) + 3(2a)(b)2
= (2a – b)3 = (2a – b)(2a – b)(2a – b)
(iii) 27 – 125a3 -135a + 225a2
[A3 – B3 – 3A2B + 3AB2 = (A – B)3]
= (3a)3 – (5b)3 – 3(3a)2(b) + 3(2a)(b)2
= (3a – 5b)3 = (3a – 5b)(3a – 5b)(3a – 5b)
(iv) 64a3 – 27b3 -144a2b + 108ab2
[A3 – B3 – 3A2B + 3AB2 = (A – B)3]
= (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2
= (4a – 3b)3 = (4a – 3b)(4a – 3b)(4a – 3b)
(v) \(27p^3- \frac{1}{216} – \frac{9}{2} p^2 + \frac{1}{4}p\)
[A3 – B3 – 3A2B + 3AB2 = (A – B)3]
= (3p)3 – (\(\frac{1}{6}\))3 – 3(3p)2(\(\frac{1}{6}\)) + 3(3p)(\(\frac{1}{6}\))2
= (3p – \(\frac{1}{6}\))3 = (3p – \(\frac{1}{6}\))(3p – \(\frac{1}{6}\))(3p – \(\frac{1}{6}\))
Question 9:
Verify : (i) x3 + y3 = (x + y)(x2 – xy + y2) (ii) x3 – y3 = (x – y)(x2 + xy + y2)
Answer
(i) x3 + y3 = (x + y)(x2 – xy + y2)
RHS
= (x + y)(x2 – xy + y2)
= x(x2 – xy + y2) + y(x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3
= LHS
(ii) x3 – y3 = (x – y)(x2 + xy + y2)
RHS
= (x – y)(x2 + xy + y2)
= x(x2 + xy + y2) – y(x2 + xy + y2)
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3
= LHS
Question 10:
Factorise each of the following:
(i) 27y3 + 125z3 (ii) 64m3 – 343n3
Answer
(i) 27y3 + 125z3
= (3y)3 + (5z)3
[A3 + B3 = (A + B)(A2 – AB + B2)]
= (3y + 5z)((3y)2 – (3y)(5z) + (5z)2)
= (3y + 5z)(9y2 – 15yz + 25z2)
(ii) 64m3 – 343n3
= (4m)3 – (7n)3
[A3 – B3 = (A – B)(A2 + AB + B2)]
= (4m – 7n)(4m)2 + (4m)(7n) + (7n)2)
= (4m – 7n)(16m2 + 28mn + 49n2)
Question 11:
Factorise : 27x3 + y3 + z3 – 9xyz
Answer
A3 + B3 + C3 – 3ABC = (A +B +C)(A2 + B2 + C2 – AB – BC – CA)
27x3 + y3 + z3 – 9xyz = (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z) (9x2 + y2 + z2– 3xy – yz – 3zx)
Question 12:
Verify that x3 + y3 + z3 – 3xyz = \(\frac{1}{2}\)(x + y + z)[(x-y)2 + (y-z)2 + (z-x)2] [Imp.]
सत्यापित कीजिए x3 + y3 + z3 – 3xyz = \(\frac{1}{2}\)(x + y + z)[(x-y)2 + (y-z)2 + (z-x)2]
Answer
RHS
= \(\frac{1}{2}\)(x + y + z)[(x-y)2 + (y-z)2 + (z-x)2]
= \(\frac{1}{2}\)(x + y + z)[x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2zx]
= \(\frac{1}{2}\)(x + y + z)[2x2 + 2y2 + 2z2– 2xy – 2yz – 2zx]
= \(\frac{1}{2} \times {2}\) (x + y + z) [x2 + y2 + z2– xy – yz – zx]
= (x + y + z) [x2 + y2 + z2– xy – yz – zx]
= x3 + xy2+ xz2– x2y -xyz -zx2 + x2y +y3 + yz2 – xy2 – y2z – xyz + x2z + y2z + z3 – xyz – yz2 – z2x
= x3 + y3 + z3 – 3xyz
= LHS
Question 13:
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Answer
We know that x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
If x + y + z = 0,
then x3 + y3 + z3 – 3xyz = (0)(x2 + y2 + z2 – xy – yz – zx) = 0
\(\Rightarrow\) x3 + y3 + z3 – 3xyz = 0
\(\Rightarrow\) x3 + y3 + z3 = 3xyz
Question 14:
Without actually calculating the cubes, find the value of each of the following:
(i) (–12)3 + (7)3 + (5)3
(ii) (28)3 + (–15)3 + (–13)3
Answer
We know that if a + b + c = 0, then a3 + b3 + c3 = 3abc
(i) (–12)3 + (7)3 + (5)3
-12 + 7 + 5 = 0
(–12)3 + (7)3 + (5)3
= \(3\times (-12)\times(7)\times(5)\) = -1260
(ii) (28)3 + (–15)3 + (–13)3
28 + (-15) + (-13) = 0
(28)3 + (–15)3 + (–13)3
= \(3\times (28)\times(-15)\times(-13)\) = 16380
Question 15:
Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area : 25a2 – 35a + 12
(ii) Area : 35y2 + 13y – 12
Answer
(i) Area of rectangle = 25a2 – 35a + 12
= (5a – 4) (5a -3)
Hence, the possible dimensions of the cuboids are (5a – 4) and (5a -3)
(ii) Area : 35y2 + 13y – 12
= (5y + 4) (7y -3)
Hence, the possible dimensions of the cuboids are (5y + 4) and (7y -3)
Question 16:
What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume : 3x2 – 12x
(ii) Volume : 12ky2 + 8ky – 20k
Answer
(i) Volume of cuboid = 3x2 – 12x
= 3x (x – 4)
= (3) (x) (x – 4)
Hence, the possible dimensions of the cuboids are 3, x and (x-4).
(ii) Volume of cuboid = 12ky2 + 8ky – 20k
= 4k (3y2 + 2y – 5)
= 4k (3y + 5) (y – 1)
Hence, the possible dimensions of the cuboids are 4k, (3y + 5) and (y – 1).
NCERT Solutions of Class 9 Maths Ch-2 Polynomials बहुपद